Name:_

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let P and Q be statements. Prove that the following statement is always true:

$$[P \land (P \Rightarrow Q)] \Rightarrow Q.$$

- **2**. Let *P* and *Q* be statements. Prove that $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$.
- **3**. Prove that $\sqrt{14}$ is irrational.
- 4. Prove there exists irrational numbers x and y such that x^y is rational.

5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an odd function that is differentiable everywhere. Prove that for every positive number b, there is a number $c \in (-b, b)$ such that f'(c) = f(b)/b. (HINT: You will need the Mean Value Theorem)

6. Suppose *a,b*, and *c* are all positive real numbers. Prove that if ab = c, then either $a \le \sqrt{c}$ or $b \le \sqrt{c}$.

7. Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

8. Let f be a real function such that for $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) + f(y).$$

Prove that:

- (a) f(0) = 0
- (b) f(n) = nf(1), for any $n \in \mathbb{N}$.

9. Prove the product of n rational numbers is again a rational number. Is the product of two irrational numbers always irrational? Prove or disprove you claim.