\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let P and Q be statements. Prove that the following statement is always true:

$$
[P \wedge(P \Rightarrow Q)] \Rightarrow Q
$$

2. Let P and Q be statements. Prove that $(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.
3. Prove that $\sqrt{14}$ is irrational.
4. Prove there exists irrational numbers x and y such that x^{y} is rational.
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is an odd function that is differentiable everywhere. Prove that for every positive number b, there is a number $c \in(-b, b)$ such that $f^{\prime}(c)=f(b) / b$. (HINT: You will need the Mean Value Theorem)
6. Suppose a, b, and c are all positive real numbers. Prove that if $a b=c$, then either $a \leq \sqrt{c}$ or $b \leq \sqrt{c}$.
7. Let $n \in \mathbb{N}$. Prove that

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

8. Let f be a real function such that for $x, y \in \mathbb{R}$,

$$
f(x+y)=f(x)+f(y) .
$$

Prove that:
(a) $f(0)=0$
(b) $f(n)=n f(1)$, for any $n \in \mathbb{N}$.
9. Prove the product of n rational numbers is again a rational number. Is the product of two irrational numbers always irrational? Prove or disprove you claim.

